Conjugate Gradient Bundle Adjustment

نویسندگان

  • Martin Byröd
  • Kalle Åström
چکیده

Bundle adjustment for multi-view reconstruction is traditionally done using the Levenberg-Marquardt algorithm with a direct linear solver, which is computationally very expensive. An alternative to this approach is to apply the conjugate gradients algorithm in the inner loop. This is appealing since the main computational step of the CG algorithm involves only a simple matrix-vector multiplication with the Jacobian. In this work we improve on the latest published approaches to bundle adjustment with conjugate gradients by making full use of the least squares nature of the problem. We employ an easy-to-compute QR factorization based block preconditioner and show how a certain property of the preconditioned system allows us to reduce the work per iteration to roughly half of the standard CG algorithm.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Modern Methods of Bundle Adjustment on the Gpu

The task to compute 3D reconstructions from large amounts of data has become an active field of research within the last years. Based on an initial estimate provided by structure from motion, bundle adjustment seeks to find a solution that is optimal for all cameras and 3D points. The corresponding nonlinear optimization problem is usually solved by the Levenberg-Marquardt algorithm combined wi...

متن کامل

Bundle Adjustment in the Large

We present the design and implementation of a new inexact Newton type algorithm for solving large-scale bundle adjustment problems with tens of thousands of images. We explore the use of Conjugate Gradients for calculating the Newton step and its performance as a function of some simple and computationally efficient preconditioners. We show that the common Schur complement trick is not limited ...

متن کامل

Large-Scale Bundle Adjustment by Parameter Vector Partition

We propose an efficient parallel bundle adjustment (BA) algorithm to refine 3D reconstruction of the large-scale structure from motion (SfM) problem, which uses image collections from Internet. Different from the latest BA techniques that improve efficiency by optimizing the reprojection error function with Conjugate Gradient (CG) methods, we employ the parameter vector partition strategy. More...

متن کامل

Bundle Adjustment using Conjugate Gradients with Multiscale Preconditioning

Bundle adjustment is a key component of almost any feature based 3D reconstruction system, used to compute accurate estimates of calibration parameters and structure and motion configurations. These problems tend to be very large, often involving thousands of variables. Thus, efficient optimization methods are crucial. The traditional Levenberg Marquardt algorithm with a direct sparse solver ca...

متن کامل

Bundle block adjustment of large-scale remote sensing data with Block-based Sparse Matrix Compression combined with Preconditioned Conjugate Gradient

In recent years, new platforms and sensors in photogrammetry, remote sensing and computer vision areas have become available, such as Unmanned Aircraft Vehicles (UAV), oblique camera systems, common digital cameras and even mobile phone cameras. Images collected by all these kinds of sensors could be used as remote sensing data sources. These sensors can obtain large-scale remote sensing data w...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2010